[スポンサーリンク]

M

マーフィー試薬 Marfey reagent

[スポンサーリンク]

概要

Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FDAA)は、アミノ酸の光学異性体を識別するための前処理・誘導体化試薬として広く利用されている。Marfey試薬は、アミノ酸の一級アミノ基と反応し、ジアステレオマーを形成する。これにより、逆相HPLCを用いてD体とL体のアミノ酸を効果的に分離・定量可能になる。アミノ酸を単離することなく、簡便な操作で一度に分析・同定が可能であり、汎用ODSカラムで実施できる点が特徴となる。

分離能や検出感度を向上させるために、改良構造が各種報告されている(実施例を参照)。

基本文献

  • Marfey, P. Carlsberg Res. Commun. 1984, 49, 591. doi:10.1007/BF02908688
  • Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K.-I.  Anal. Chem. 1997, 69, 5146-5151. doi:10.1021/ac970289b
  • Kuranaga, T.; Minote, M.; Morimoto, R.; Pan, C.; Ogawa, H.; Kakeya, H. ACS Chem Biol. 2020, 15, 2499–2506. doi:10.1021/acschembio.0c00517
<review>

開発の経緯

1984年、Peter Marfeyによって、アミノ酸のエナンチオマーを識別するための誘導体化試薬として開発された。この方法は、アミノ酸の立体化学を簡便に決定できることから、広く活用されている。

実施例

アミノ酸の立体配置決定

FDAA誘導体は熱的に不安定であるため、質量分析法には適用困難とされていた。原田らは、改良Marfey試薬(FDVA, FDLA)を用いて、質量分析法に適した分析手順へと発展させた。標準試料を使用せずに目的のアミノ酸を同定し、その絶対配置を導き出すことが可能になっている。この手法により、ペプチド天然物中のチアゾールアミノ酸の絶対配置決定が実現されている。[1]

 

検出高感度化を指向したMarfey試薬の改良

倉永・掛谷らは、末端にジメチルアミノ基を有する試薬(FDVDA, FDLDA)へと改変することで、中性pH条件での微量・高感度MS検出を可能とした[2-7]。試薬はナカライテスク社より市販されている。

実施手順

Marfey試薬は、アミノ酸の一級アミノ基と反応し、対応するジアステレオマーを形成する。D-アミノ酸誘導体は強い分子内水素結合を形成するため、対応するL-アミノ酸誘導体よりも極性が低下する。その結果、逆相カラム上でD-誘導体は選択的に保持され、L-誘導体よりも遅れて溶出する。FDVDAを用いる実施手順は関連動画を参照。

関連動画

参考文献

  1. Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K.-I.  Anal. Chem. 1997, 69, 5146-5151. doi:10.1021/ac970289b
  2. (a) Kuranaga, T.; Minote, M.; Morimoto, R.; Pan, C.; Ogawa, H.; Kakeya, H. ACS Chem Biol. 2020, 15, 2499–2506. doi:10.1021/acschembio.0c00517 (b) 倉永 健史, Peptide News Letter Japan 2021, 121(7), 5. [PDF]
  3. Kuranaga, T.; Kakeya, H.; Methods Enzymol. 2022, 665, 105-133. doi:10.1016/bs.mie.2021.11.004
  4. Morimoto, R.; Matsumoto, T.; Minote, M.; Yanagisawa, M.; Yamada, R.; Kuranaga, T.; Kakeya, H.  Chem. Pharm. Bull. 2021, 69, 265-270. doi:10.1248/cpb.c20-00958
  5. Jiang, Y.; Matsumoto, T.; Kuranaga, T.; Lu, S.; Wang, W.; Onaka, H.; Kakeya, H. J. Antibiot. 2021, 74, 307–316. doi:10.1038/s41429-020-00400-3
  6. Pan, C.; Kuranaga, T.; Kakeya, H. J. Nat. Med. 2021, 75, 339–343. doi:10.1007/s11418-020-01472-z

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. メリフィールド ペプチド固相合成法 Merrifield Sol…
  2. アフマトヴィッチ反応 Achmatowicz Reaction
  3. ホフマン脱離 Hofmann Elimination
  4. PCC/PDC酸化 PCC/PDC Oxidation
  5. FAMSO
  6. マクマリーカップリング McMurry Coupling
  7. ミズロウ・エヴァンス転位 Mislow-Evans Rearra…
  8. ペタシス・フェリエ転位 Petasis-Ferrier Rear…

注目情報

ピックアップ記事

  1. Reaxys Prize 2012受賞者決定!
  2. 北九州における化学企業の盛んな生産活動
  3. 花王、ワキガ臭の発生メカニズムを解明など研究成果を発表
  4. 積水化学、工業用接着剤で米最大手と提携
  5. ペプチドの特定部位を狙って変換する -N-クロロアミドを経由するペプチドの位置選択的C–H塩素化-
  6. 電子1個の精度で触媒ナノ粒子の電荷量を計測
  7. 鉄カルベン活性種を用いるsp3 C-Hアルキル化
  8. ナノ粒子応用の要となる「オレイル型分散剤」の謎を解明-ナノ粒子の分散凝集理論の発展に貢献-
  9. 旭化成の吉野彰氏 リチウムイオン電池技術の発明・改良で 2019 年欧州発明家賞を受賞
  10. 年に一度の「事故」のおさらい

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー